Reading and Writing Data

A short description of the post.

1.Load packages we will use

  1. Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file to ‘file.csv’. The data should be in the same directory as this file Read the data into R and assign it to ‘emissions’

file_csv <- here("_posts",
                 "2021-02-26-reading-and-writing-data",
                 "co-emissions-per-capita.csv")

emissions <- read_csv(file_csv)
  1. Show the first 20 rows (observations of) ‘emissions’
emissions
# A tibble: 22,383 x 4
   Entity      Code   Year `Per capita CO2 emissions`
   <chr>       <chr> <dbl>                      <dbl>
 1 Afghanistan AFG    1949                    0.00191
 2 Afghanistan AFG    1950                    0.0109 
 3 Afghanistan AFG    1951                    0.0117 
 4 Afghanistan AFG    1952                    0.0115 
 5 Afghanistan AFG    1953                    0.0132 
 6 Afghanistan AFG    1954                    0.0130 
 7 Afghanistan AFG    1955                    0.0186 
 8 Afghanistan AFG    1956                    0.0218 
 9 Afghanistan AFG    1957                    0.0343 
10 Afghanistan AFG    1958                    0.0380 
# ... with 22,373 more rows
  1. Start with ‘emissions’ data THEN

use ‘clean_names’ from the janitor package to make the names easier to work with assign the output to ‘tidy_emissions’ show the first 10 rows of ‘tidy_emissions’

tidy_emissions  <- emissions %>% 
  clean_names()

tidy_emissions
# A tibble: 22,383 x 4
   entity      code   year per_capita_co2_emissions
   <chr>       <chr> <dbl>                    <dbl>
 1 Afghanistan AFG    1949                  0.00191
 2 Afghanistan AFG    1950                  0.0109 
 3 Afghanistan AFG    1951                  0.0117 
 4 Afghanistan AFG    1952                  0.0115 
 5 Afghanistan AFG    1953                  0.0132 
 6 Afghanistan AFG    1954                  0.0130 
 7 Afghanistan AFG    1955                  0.0186 
 8 Afghanistan AFG    1956                  0.0218 
 9 Afghanistan AFG    1957                  0.0343 
10 Afghanistan AFG    1958                  0.0380 
# ... with 22,373 more rows
  1. Start with the ‘tidy_emissions’ THEN use ‘filter’ to extract rows with ‘year == 1985’ THEN use ‘skim’ to calculate the descriptive statistics
tidy_emissions %>% 
  filter(year == 1985) %>% 
  skim()
Table 1: Data summary
Name Piped data
Number of rows 209
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 209 0
code 12 0.94 3 8 0 197 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1985.00 0.00 1985.00 1985.00 1985.00 1985.00 1985.00 ▁▁▇▁▁
per_capita_co2_emissions 0 1 5.53 8.94 0.04 0.51 2.65 7.62 83.83 ▇▁▁▁▁
  1. 13 observations have a missing code. How are these observations different? Start with ‘tidy_emissions’ then extract rows with ‘year == 1985’ and are missing a code
tidy_emissions %>% 
  filter(year == 1985, is.na(code))
# A tibble: 12 x 4
   entity                     code   year per_capita_co2_emissions
   <chr>                      <chr> <dbl>                    <dbl>
 1 Africa                     <NA>   1985                     1.23
 2 Asia                       <NA>   1985                     1.81
 3 Asia (excl. China & India) <NA>   1985                     2.76
 4 EU-27                      <NA>   1985                     9.19
 5 EU-28                      <NA>   1985                     9.28
 6 Europe                     <NA>   1985                    10.9 
 7 Europe (excl. EU-27)       <NA>   1985                    13.3 
 8 Europe (excl. EU-28)       <NA>   1985                    14.1 
 9 North America              <NA>   1985                    13.2 
10 North America (excl. USA)  <NA>   1985                     5.01
11 Oceania                    <NA>   1985                    10.8 
12 South America              <NA>   1985                     1.87

Entities that are not countries do not have country codes.

  1. Start with tidy_emissions THEN use ‘filter’ to extract rows with year == 1985 without missing codes THEN use ‘select’ to drop the ‘year’ variable THEN use ‘rename’ to change the variable ‘entity’ to ‘country’ assign the output to ‘emissions_1985’
emissions_1985 <- tidy_emissions %>% 
  filter(year == 2019, !is.na(code)) %>% 
  select(-year) %>% 
  rename(country = entity)
  1. Which 15 countries have the highest ‘per_capita_co2_emissions’?

start with ‘emissions_1985’ THEN use ‘slice_max’ to extract the 15 rows with the ‘per_capita_co2_emissions’ assign the output to ‘max_15_emitters’

max_15_emitters <- emissions_1985 %>% 
  slice_max(per_capita_co2_emissions, n = 15)
  1. Which 15 countries have the lowest ‘per_capita_co2_emissions’?

start with ‘emissions_1985’ THEN use ‘slice_min’ to extract the 15 rows with the ‘per_capita_co2_emissions’ assign the output to ‘min_15_emitters’

min_15_emitters <- emissions_1985 %>% 
  slice_min(per_capita_co2_emissions, n = 15)
  1. Use ‘bind_rows’ to bind together the ‘max_15_emitters’ and ‘min_15_emitters’ assign the output to ‘max_min_15’
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
  1. Export ‘max_min_15’ to 3 file formats
max_min_15 %>% write_csv("max_min_15.csv") #comma-separated values
max_min_15 %>% write_tsv("max_min_15.tsv") #tab separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") #pipe-separated
  1. Read the 3 file formats into R
max_min_15_csv <- read_csv("max_min_15.csv") #comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") #tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") #pipe-separated
  1. Use ‘setdiff’ to check for any differences among ‘max_min_15_csv’, ‘max_min_15_tsv’ and ‘max_min_15_psv’
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
#   per_capita_co2_emissions <dbl>

Are there any differences?

  1. Reorder ‘country’ in ‘max_min_15’ for plotting and assign to man_min_15_plot_data

start with ‘emissions_1985’ THEN use ‘mutate’ to reorder ‘country’ according to ‘per_capital_co2_emissions’

max_min_plot_data <- max_min_15 %>% 
  mutate(country = reorder(country, per_capita_co2_emissions))
  1. Plot ‘max_min_15_plot_data’
ggplot(data = max_min_plot_data, mapping = aes(x = per_capita_co2_emissions, y = country)) + geom_col() + labs(title = 'The top 15 and bottom 15 per capita CO2 emissions', subtitle = "for 1985", x = NULL, y = NULL)

  1. Save the plot directory with this post
ggsave(filename = "preview.png",
       path = here("_posts", "2021-02-26-reading-and-writing-data"))
  1. Add preview.png to yanl chuck at the top of this file

preview:preview.png