Hypothesis Testing

Using Computer simulation.Based on examples from the infer package. Code for Quiz 13

Load the R package we will use.

Question: t-test

set.seed(123)

hr_3_tidy.csv is the name of your data subset - Read it into and assign to hr - Note:col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor

hr <- read_csv("https://estanny.com/static/week13/data/hr_3_tidy.csv",
               col_types = "fddfff")
use the skim to summarize the data in hr
skim(hr)
Table 1: Data summary
Name hr
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 4
numeric 2
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
gender 0 1 FALSE 2 fem: 253, mal: 247
evaluation 0 1 FALSE 4 bad: 148, fai: 138, goo: 122, ver: 92
salary 0 1 FALSE 6 lev: 98, lev: 87, lev: 87, lev: 86
status 0 1 FALSE 3 fir: 196, pro: 172, ok: 132

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 39.41 11.33 20 29.9 39.35 49.1 59.9 ▇▇▇▇▆
hours 0 1 49.68 13.24 35 38.2 45.50 58.8 79.9 ▇▃▃▂▂

The mean hours worked per week is: 49.7

Q: Is the mean number of hours worked per week 48?

specify that hours is the variable of interest

hr %>% 
  specify(response = hours)
Response: hours (numeric)
# A tibble: 500 x 1
   hours
   <dbl>
 1  49.6
 2  39.2
 3  63.2
 4  42.2
 5  54.7
 6  54.3
 7  37.3
 8  45.6
 9  35.1
10  53  
# ... with 490 more rows
Hypothesize that the average hours worked is 48
hr %>% 
  specify(response = hours) %>% 
  hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
   hours
   <dbl>
 1  49.6
 2  39.2
 3  63.2
 4  42.2
 5  54.7
 6  54.3
 7  37.3
 8  45.6
 9  35.1
10  53  
# ... with 490 more rows
**Generate 1000 replicates representing the null hypothesis
hr %>% 
  specify(response = hours) %>% 
  hypothesize(null = "point", mu = 48) %>% 
  generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups:   replicate [1,000]
   replicate hours
       <int> <dbl>
 1         1  34.5
 2         1  33.6
 3         1  35.6
 4         1  78.2
 5         1  52.7
 6         1  77.0
 7         1  37.1
 8         1  41.9
 9         1  62.7
10         1  38.8
# ... with 499,990 more rows

The output has 500,000 rows

Calculate the distribution of statistics from the generated data - Assign the output null_t_distribution - Display null_t_distribution

null_t_distribution <- hr %>% 
  specify(response = age) %>% 
  hypothesize(null = "point", mu = 48) %>% 
  generate(reps = 1000, type = "bootstrap") %>% 
  calculate(stat = "t")
null_t_distribution
# A tibble: 1,000 x 2
   replicate    stat
 *     <int>   <dbl>
 1         1  0.929 
 2         2  0.480 
 3         3 -0.0136
 4         4  0.435 
 5         5 -0.810 
 6         6 -1.06  
 7         7 -0.0470
 8         8  0.809 
 9         9  0.986 
10        10  0.199 
# ... with 990 more rows
visualize the simulated null distribution
visualize(null_t_distribution)

Calculate the statitic from your observed data - Assign the output observed_t_statistic - Display observed_t_statistic

observed_t_statistic <- hr %>% 
  specify(response = hours) %>% 
  hypothesize(null = "point", mu=48) %>% 
  calculate(stat = "t")
observed_t_statistic
# A tibble: 1 x 1
   stat
  <dbl>
1  2.83

get_p_value from the simulated null distribution and the observed statistic

null_t_distribution %>% 
  get_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.012

**shade_p_value on the simulated null distribution

null_t_distribution %>% 
  visualize() +
  shade_p_value(obs_stat = observed_t_statistic, direction = "two-sided")

Is the p-value < 0.05? Yes Does your analysis support the null hypothesis that the true mean number of hours worked was 48? no

Question: 2 salmple t-test

hr_3_tidy.csv is the name of your data set - Read it into and assign to hr_2 - Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor

hr_2 <- read_csv("https://estanny.com/static/week13/data/hr_3_tidy.csv",
                 col_types = "fddfff")

Q: Is the average number of hours worked the same for both genders in hr_2?

use skim to summarize the data in hr_2 by gender

hr_2 %>% 
  group_by(gender) %>% 
  skim()
Table 2: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables gender

Variable type: factor

skim_variable gender n_missing complete_rate ordered n_unique top_counts
evaluation male 0 1 FALSE 4 bad: 72, fai: 67, goo: 61, ver: 47
evaluation female 0 1 FALSE 4 bad: 76, fai: 71, goo: 61, ver: 45
salary male 0 1 FALSE 6 lev: 47, lev: 43, lev: 43, lev: 42
salary female 0 1 FALSE 6 lev: 51, lev: 46, lev: 45, lev: 43
status male 0 1 FALSE 3 fir: 98, pro: 81, ok: 68
status female 0 1 FALSE 3 fir: 98, pro: 91, ok: 64

Variable type: numeric

skim_variable gender n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age male 0 1 38.23 10.86 20 28.9 37.9 47.05 59.9 ▇▇▇▇▅
age female 0 1 40.56 11.67 20 31.0 40.3 50.50 59.8 ▆▆▇▆▇
hours male 0 1 49.55 13.11 35 38.4 45.4 57.65 79.9 ▇▃▂▂▂
hours female 0 1 49.80 13.38 35 38.2 45.6 59.40 79.8 ▇▂▃▂▂

**Use geom_boxplot to plot distributions of hours worked by gender

hr_2 %>% 
  ggplot(aes(x = gender, y = hours)) +
  geom_boxplot()

specify the variables of interest are hours and gender

hr_2 %>% 
  specify(response = hours, explanatory = gender)
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  49.6 male  
 2  39.2 female
 3  63.2 female
 4  42.2 male  
 5  54.7 male  
 6  54.3 female
 7  37.3 female
 8  45.6 female
 9  35.1 female
10  53   male  
# ... with 490 more rows
hypothesize that the number of hours worked and gender are independent
hr_2 %>% 
  specify(response = hours, explanatory = gender) %>% 
  hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  49.6 male  
 2  39.2 female
 3  63.2 female
 4  42.2 male  
 5  54.7 male  
 6  54.3 female
 7  37.3 female
 8  45.6 female
 9  35.1 female
10  53   male  
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr_2 %>% 
  specify(response = hours, explanatory = gender) %>% 
  hypothesize(null = "independence") %>% 
  generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours gender replicate
   <dbl> <fct>      <int>
 1  55.7 male           1
 2  35.5 female         1
 3  35.1 female         1
 4  44.2 male           1
 5  52.8 male           1
 6  46   female         1
 7  41.2 female         1
 8  52.9 female         1
 9  35.6 female         1
10  35   male           1
# ... with 499,990 more rows

calculate the distribution of stattistic from the generated data - Assign the output null_distribution_2_sample_permute - Display null_distribution_2_sample_permute

null_distribution_2_sample_permute <- hr_2 %>% 
  specify(response = hours, explanatory = gender) %>% 
  hypothesize(null = "independence") %>% 
  generate(reps = 1000, type = "permute") %>% 
  calculate(stat = "t", order = c("female", "male"))
 null_distribution_2_sample_permute
# A tibble: 1,000 x 2
   replicate    stat
 *     <int>   <dbl>
 1         1 -1.81  
 2         2 -1.29  
 3         3  0.0525
 4         4 -0.793 
 5         5  0.826 
 6         6  0.429 
 7         7  0.0843
 8         8 -0.264 
 9         9  2.42  
10        10  0.603 
# ... with 990 more rows

visualize the simulated null distribution

visualize(null_distribution_2_sample_permute)

Calculate the statistic from your observed data - Assign the output observed_t_2_sample_stat - Display observed_t_2_sample_stat

observed_t_2_sample_stat <- hr_2 %>% 
  specify(response = hours, explanatory = gender) %>% 
  calculate(stat = "t", order = c("female", "male"))
observed_t_2_sample_stat
# A tibble: 1 x 1
   stat
  <dbl>
1 0.208
get_p_value from the simulated null distribution and the observed statistic
null_t_distribution %>% 
  get_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.796
shade_p_value on the simulated null distribution
null_t_distribution %>% 
  visualize() +
  shade_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")

Is the p-value < 0.05? no

Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? yes

Question: ANOVA

hr_1_tidy.csv is the name of your data subset - Read it into and assign to hr_anova - Note: col_types = “fddfff” defiens the column types factor-double-double-factor-factor-factor

hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
                     col_types = "fddfff")

Q: Is the average number of hours worked the same for all three staus(fired,ok and promoted)?

Use skim to summarize the data in hr_anova by status

hr_anova %>% 
  group_by(status) %>% 
  skim()
Table 3: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables status

Variable type: factor

skim_variable status n_missing complete_rate ordered n_unique top_counts
gender fired 0 1 FALSE 2 fem: 96, mal: 89
gender ok 0 1 FALSE 2 fem: 77, mal: 76
gender promoted 0 1 FALSE 2 fem: 87, mal: 75
evaluation fired 0 1 FALSE 4 bad: 65, fai: 63, goo: 31, ver: 26
evaluation ok 0 1 FALSE 4 bad: 69, fai: 59, goo: 15, ver: 10
evaluation promoted 0 1 FALSE 4 ver: 63, goo: 60, fai: 20, bad: 19
salary fired 0 1 FALSE 6 lev: 41, lev: 37, lev: 32, lev: 32
salary ok 0 1 FALSE 6 lev: 40, lev: 37, lev: 29, lev: 23
salary promoted 0 1 FALSE 6 lev: 37, lev: 35, lev: 29, lev: 23

Variable type: numeric

skim_variable status n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age fired 0 1 38.64 11.43 20.2 28.30 38.30 47.60 59.6 ▇▇▇▅▆
age ok 0 1 41.34 12.11 20.3 31.00 42.10 51.70 59.9 ▆▆▆▆▇
age promoted 0 1 42.13 10.98 21.0 33.40 42.95 50.98 59.9 ▆▅▆▇▇
hours fired 0 1 41.67 7.88 35.0 36.10 38.90 43.90 75.5 ▇▂▁▁▁
hours ok 0 1 48.05 11.65 35.0 37.70 45.60 56.10 78.2 ▇▃▃▂▁
hours promoted 0 1 59.27 12.90 35.0 51.12 60.10 70.15 79.7 ▆▅▇▇▇
Use geom_plot to plot distributions of hours worked by status
hr_anova %>% 
  ggplot(aes(x = status, y = hours)) +
  geom_boxplot()

specify the variables of interest are hours and status

hr_anova %>% 
  specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  36.5 fired   
 2  55.8 ok      
 3  35   fired   
 4  52   promoted
 5  35.1 ok      
 6  36.3 ok      
 7  40.1 promoted
 8  42.7 fired   
 9  66.6 promoted
10  35.5 ok      
# ... with 490 more rows
hypothesize that the number of hours worked and status are independent
hr_anova %>% 
  specify(response = hours, explanatory = status) %>% 
  hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  36.5 fired   
 2  55.8 ok      
 3  35   fired   
 4  52   promoted
 5  35.1 ok      
 6  36.3 ok      
 7  40.1 promoted
 8  42.7 fired   
 9  66.6 promoted
10  35.5 ok      
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr_anova %>% 
  specify(response = hours, explanatory = status) %>% 
  hypothesize(null = "independence") %>% 
  generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours status   replicate
   <dbl> <fct>        <int>
 1  40.3 fired            1
 2  40.3 ok               1
 3  37.3 fired            1
 4  50.5 promoted         1
 5  35.1 ok               1
 6  67.8 ok               1
 7  39.3 promoted         1
 8  35.7 fired            1
 9  40.2 promoted         1
10  38.4 ok               1
# ... with 499,990 more rows

calculate the distribution of statistics from the generated data - Assign the output null_distribution_anova - Display null_distribution_anova

null_distribution_anova <- hr_anova %>% 
  specify(response = hours, explanatory = gender) %>% 
  hypothesize(null = "independence") %>% 
  generate(reps = 1000, type = "permute") %>% 
  calculate(stat = "F")

null_distribution_anova
# A tibble: 1,000 x 2
   replicate   stat
 *     <int>  <dbl>
 1         1 0.365 
 2         2 0.650 
 3         3 0.185 
 4         4 0.0184
 5         5 0.163 
 6         6 0.0194
 7         7 4.92  
 8         8 2.11  
 9         9 0.341 
10        10 0.855 
# ... with 990 more rows

visualize the simulated null distribution

visualize(null_distribution_anova)

calculate the statistic from your observed data - Assign the output observed_f_sample_stat - Display observed_f_sample_stat

observed_f_sample_stat <- hr_anova %>% 
  specify(response = hours, explanatory = status) %>% 
  calculate(stat = "F")
observed_f_sample_stat
# A tibble: 1 x 1
   stat
  <dbl>
1  115.

get_p_value from the simulated null distribution and the observed statistic

null_distribution_anova %>% 
  get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
  p_value
    <dbl>
1       0

shade_p_value on the simulated null distribution

null_t_distribution %>% 
  visualize() +
  shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")

If the p-value < 0.05? yes Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? no